
Volume 2 1

The NeceMoon Album, Page 1

The NeceMoon Album

Technologies and Strategies to Keep Moving Forward

By Necemon Yai

First edition

Published by Evasium ®

April 2018

London, UK

TheAlbum.NeceMoon.com

The contents of this file are protected under the UK Copyright, Designs and Patents Act 1988.

License

This file is free to distribute and give away to as many people as you would like.

I only ask that you do not sell it or publish the content onto any website.

If you use any quotes from this document, give me credit and link to the original file.

If you write a book and I quote you, I will give you credit and links too.

© Necemon Yai

necemon@gmail.com

www.necemonyai.com

All Rights Reserved.

Version 1.0.7.235

To the ones I lost, to the ones I got back

For each one that gets lost, ten get laid back

 Volume 2 | 4

The NeceMoon Album, Volume 2, Page 4

Table of Contents

Introduction ... 6

For All Practical Purposes .. 9

Volume 2: Full Moon (Hardcore) ... 10

Chapter 6: Software Development and Engineering .. 11

8 reasons why you would enjoy being a programmer .. 12

Writing and Programming: Pretty Much The Same Thing (by Jean-Patrick Ehouman) 14

On Technical Orientation : 5 Basic Considerations When Starting To Code ... 15

4 Substantial Tactics Guaranteed To Boost Your Game Creation Skills .. 17

10 Years of Programming .. 19

Should you build it if nobody comes? (by Darren Mart) ... 23

Useful Job Search Websites For Programmers In The UK ... 27

Microsoft Professional Certifications for Developers ... 30

Chapter 7: C# .NET Programming ... 32

Why I like C# so much .. 33

C# Free Learning Resources For Beginners And Professionals .. 36

How to Track Mysterious Bugs with Visual Studio .. 38

How to Debug a Windows Service in Visual Studio (by Holty Sow) .. 40

My Essentials : Top 12 Tech Courses on Pluralsight for .NET Developers ... 43

Deploying a Web App to IIS / Windows Server In 7 Clever Steps ... 47

Launching Your Application At Windows Startup Without Hacking The Registry (by Holty Sow) 49

My 12 Favorite Entity Framework Tricks ... 51

ASP.NET MVC: Avoid Polluting The Model Of The View With Error Messages (by Holty Sow) 55

Limiting The Execution Of An Action To AJAX Requests Only (by Holty Sow) ... 57

[Interview] In The Bubble Of Holty Sow: "for more efficiency, I prefer to work in an agile team" 59

The Xamarin Revolution .. 61

Top 8 Tricks with Xamarin Programming .. 63

Chapter 8: Epic Prototypes, Classic Projects, Historic Genre .. 65

Inside Bavardica - Part 1 : Discussion of the subject areas ... 66

Inside Bavardica - Part 2 : Progress and Achievement of the Project ... 69

Inside Bavardica - Part 3 : Design of the 2D characters... 75

Inside Bavardica - Part 4 : Scope for future improvements .. 79

10 things I learned from building Bavardica .. 81

Babi Fraya: The Hot Winter Illusion ... 83

 Volume 2 | 5

The NeceMoon Album, Volume 2, Page 5

Relaunch : Kpakpatoya 2.0 as an Interactive Platform .. 86

Flux Project : Social News Web Applications ... 92

Stay up to date with your favorite topic on social platforms .. 94

Furtivue (Or How To Send Furtive Messages Like A Ninja) ... 96

Chapter 9: Research and Case Studies .. 97

Phidgets: First Steps In Robotics? .. 98

Paper Prototyping .. 105

Dual Shock 3 - Part 1: History of game controllers .. 107

Dual Shock 3 - Part 2 : The amazing story of the Dual Shock .. 111

Dual Shock 3 - Part 3: Device Analysis and Specification .. 113

Business at the speed of game production: OpenGL or XNA? .. 116

GOOSE (GOOgle Supply search Engine) .. 117

Final Reminder ... 121

Conclusion ... 122

Share The Album with Your Mates .. 123

 Volume 2 | 6

The NeceMoon Album, Volume 2, Page 6

Introduction

About The NeceMoon Album: what is this all about?

The NeceMoonϰ is a Blog about Technology and Strategy. The Album is The Best-Of, a compilation of the

most popular articles on The NeceMoonϰ.

The main objective of The NeceMoonϰ is to share tips and insights on a sensible range of topics, in order to

let others learn from my mistakes and successes, and hopefully to make things easier for the next person.

The main objective of The Album is to promote an optimal access to that content. The Blog format does not

always do justice to techno-strategic content. Originally, Blogs were designed in a journalistic spirit and are

more suitable to chronological events and (more or less trivial) discussions around daily news. Even if the

usefulness and the importance of an analysis persist in time, it becomes almost impossible to find and

difficult to consult, as more articles keep stacking.

That is why the best articles have been cherry-picked, reviewed and arranged in a logical order that better

matches the layout of a book. The Album is free of charge.

The NeceMoonϰ can be accessed from NeceMoon.com (or necemonyai.com/blog)

The NeceMoonϰ Album can be downloaded in various file formats, in full from TheAlbum.NeceMoon.com

(or necemonyai.com/Blog/page/The-Album.aspx). The available formats are PDF, EPUB, MOBI/AZW3/KF8

(Amazon Kindle) and MP3. Furthermore, the various chapters and volumes can be downloaded

independently/separately, according to your interests.

About the Author: who is Necemon Yai?

I am a Software Development Engineer extensively involved in Microsoft .NET technologies. Full time

developer. Part time digital artist, strategist, essayist and entreprenerd. I majored in computer science from

NIIT, Christ University and Swansea University (Master of Engineering, Computing).

At the time of publishing this, I have worked for a Europe leading E-Commerce company, a major UK

financial group, the General Electric global corporation and a few tech start-ups that you probably never

heard of.

Over the past decade or so, I have been running The NeceMoon blog, where I describe my experiences, my

observations and my reflexions. I mostly talk about Technology and Strategy. Here I share my most popular

articles.

http://necemonyai.com/Blog/page/The-Album.aspx
http://necemonyai.com/blog/
http://necemonyai.com/Blog/page/The-Album.aspx
http://necemoon.com/
http://necemonyai.com/Blog
http://thealbum.necemoon.com/
http://necemonyai.com/Blog/page/The-Album.aspx
http://necemonyai.com/

 Volume 2 | 7

The NeceMoon Album, Volume 2, Page 7

About the Contributors: who is in your War Council?

I invited the best writers in my network to include some contributions in this book, especially some of their

most relevant insights in terms of Technology and Strategy. These top authors are, Ahou The African Chick,

Antoine Mian, Cyriac Gbogou, Darren Mart, Edith Brou, Holty Sow, Israel Yoroba, Jean Luc Houedanou,

Jean-Patrick Ehouman, Karen Kakou, Monty Oum, Nanda Seye, Nnenna Nwakanma, Olivier Madiba,

Vanessa Lecosson and Yehni Djidji.

Along with their respective writings, you can find links to their own web pages. In addition, most of these

contributors introduce themselves and provide you with some tactics in our exclusive interviews that you

will also find in this book.

About You, Dear Reader: ǿƘƻ ƛǎ ǘƘƛǎ ōƻƻƪ ŦƻǊΚ ²ƘŀǘΩǎ ƛƴ ŦƻǊ ȅƻǳΚ

In The Album, there are 9 chapters organised in 2 volumes. Each chapter deals with a specific topic. You

ŘƻƴΩt have to read everything. If you are interested (to one extend or another) in one or more of these

topics, you would possibly appreciate the related chapter(s):

Volume 1: Moon Light (softcore)

 Chapter 1: Strategy and Tactics

 Chapter 2: Digital Marketing and Web Visualisation

 Chapter 3: Corporate Worlds and Emerging Markets

 Chapter 4: Quick Wins, Tricks and Tips

 Chapter 5: Transition - Extra Thoughts and Sharp Fantasy

Volume 2: Full Moon (hardcore)

 Chapter 6: Software Development and Engineering

 Chapter 7: C# .NET Programming

 Chapter 8: Epic Prototypes, Classic Projects, Historic Genre

 Chapter 9: Research and Case Studies

If you want to, you can download and read only the chapter(s) and volume(s) that you are interested in.

Several file formats are available on TheAlbum.NeceMoon.com

(or necemonyai.com/blog/page/The-Album.aspx)

All the Web links in this document are working, feel very welcome to click on them.

http://thealbum.necemoon.com/
http://necemonyai.com/blog/page/The-Album.aspx

 Volume 2 | 8

The NeceMoon Album, Volume 2, Page 8

 Volume 2 | 9

The NeceMoon Album, Volume 2, Page 9

For All Practical Purposes
The NeceMoon Album, Volume 2

This document contains the Volume 2 of The Album. It includes 4 chapters. If you care, 5 additional

chapters are available in the Volume 1. Depending on your interests, you may download, (re-)read or share

any of the various chapters and volumes independently/separately. The PDF, EPUB, MOBI/AZW3/KF8

(Amazon Kindle) and MP3 formats are available.

To get them, just click on any of the links you like below or go to TheAlbum.NeceMoon.com

(or necemonyai.com/Blog/page/The-Album.aspx)

The NeceMoon Album (complete)

Volume 1: Moon Light (softcore)

Chapter 1: Strategy and Tactics

Chapter 2: Digital Marketing and Web Visualisation

Chapter 3: Corporate Worlds and Emerging Markets

Chapter 4: Quick Wins, Tricks and Tips

Chapter 5: Transition - Extra Thoughts and Sharp Fantasy

Volume 2: Full Moon (hardcore)

Chapter 6: Software Development and Engineering

Chapter 7: C# .NET Programming

Chapter 8: Epic Prototypes, Classic Projects, Historic Genre

Chapter 9: Research and Case Studies

The Album is available in French as well at Album.NeceMoon.com

(or necemonyai.com/Blog/page/L-Album.aspx)
V o l u m e 2

http://thealbum.necemoon.com/
http://necemonyai.com/Blog/page/The-Album.aspx
http://necemonyai.com/Blog/page/The-Album.aspx
http://necemonyai.com/Blog/page/The-Album.aspx#Volume1
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter1
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter2
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter3
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter4
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter5
http://necemonyai.com/Blog/page/The-Album.aspx#Volume2
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter6
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter7
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter8
http://necemonyai.com/Blog/page/The-Album.aspx#Chapter9
http://album.necemoon.com/
http://necemonyai.com/Blog/page/L-Album.aspx

Volume 2

Full Moon
(Hardcore)

In this volume:

Chapter 6: Software Development and Engineering

Chapter 7: C# .NET Programming

Chapter 8: Epic Prototypes, Classic Projects, Historic Genre

Chapter 9: Research and Case Studies

Featuring Darren Mart, Holty Sow and Jean-Patrick Ehouman

Chapter 6

Software Development
and Engineering
S o f t w a r e D e v e l o p m e n t a n d E n g i n e e r i n g

Featuring Darren Mart and Jean-Patrick Ehouman

 Software Development and Engineering | 12

The NeceMoon Album, Volume 2, Page 12

8 reasons why you would enjoy being a programmer
By Necemon

If you are a programmer, there are probably a lot of reasons that motivate you to do what you do. I hope

you find here some more motivations.

If you want to be a programmer, you may find here some more reasons to go for that awesome path.

However, I guess I am writing this mainly for those who don't know what to do with their life. Here are

some clues about a job that is fun, useful and satisfying to many extents.

From the top of my mind, here are 8 reasons why you would enjoy being a programmer. I hope this inspire

you.

1. Programming makes your dreams come true. When you understand programming, you can give life to

your thoughts by applying them to real life. You can literally create things.

2. Programming is the ultimate form of interactive art. You can make software, websites and games that

others can play with. So you can talk to them indirectly and they can talk back. No other art form is quite

this interactive. While drawing, painting, movies and music go to the audience (in one direction), code goes

both ways.

3. That's the kind of job you can do from anywhere. From your couch, from home, from office, on travel,

whichever country... The only things you need are a computer and your brain.

4. It's easy to learn. There are tons of ressources available online, many of them are free. Also, there are

many online communities that can support you through forums, chats, emails, etc.

http://necemonyai.com/Blog/post/8-reasons-why-you-would-enjoy-being-a-programmer.aspx
http://necemonyai.com/
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/What-will-you-do-in-life-.aspx
http://necemonyai.com/Blog/post/Monty-Oum-or-the-Bruce-Lee-of-Digital-Arts.aspx
http://necemonyai.com/Blog/post/Monty-Oum-or-the-Bruce-Lee-of-Digital-Arts.aspx
http://learnpythonthehardway.org/book/advice.html
http://necemonyai.com/Blog/post/C-Sharp-Free-Learning-Resources-For-Beginners-And-Professionals.aspx

 Software Development and Engineering | 13

The NeceMoon Album, Volume 2, Page 13

5. You don't have to rely on anyone to do programming. You may have a chance to do it for a company or

for a research programme. Even if it's not in a corporate job, you can work in a team. And even if you don't

find a team that fits you, you can work by yourself. Also, you don't need much money to get started.

6. You can't have enough of it. You can't get bored. Requirements and technology are moving up so fast

that you always face new challenges.

7. It's a field of meritocracy. They know you don't fake your skills. You know what you know. You do what

you can do and you get a fair recognition for it.

8. It's fun !

N.

http://necemonyai.com/Blog/post/5-lessons-I-learned-from-my-internship-at-General-Electric.aspx
http://necemonyai.com/Blog/post/5-lessons-I-learned-from-my-internship-at-General-Electric.aspx
http://necemonyai.com/Blog/post/4-Substantial-Tactics-Guaranteed-To-Boost-Your-Game-Creation-Skills.aspx
http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
http://necemonyai.com/Blog/post/10-Years-of-Programming.aspx

 Software Development and Engineering | 14

The NeceMoon Album, Volume 2, Page 14

Writing and Programming: Pretty Much The Same Thing
By Jean-Patrick Ehouman

5 years ago, if I was told that I could run a blog, I would not have believed it. As a software engineer, I was
spending more time designing and writing programs. However, a priori, nothing suggested that I could
write good articles too.

In hindsight, I can say that these two activities have more similarities than differentiation points. When you
write, you create, you fill a blank, you give life. Similarly, when you design a program, you create a system
that will be used on a daily basis. So in both cases you need to deeply understand the reader or the user of
your creation.

Putting yourself in their shoes leads you to imaginative and creative like a painter or a pianist. So, when I
am asked about the fundamentals required to learn how to make good computer programs or software, I
ask the interested party if he has ever written a letter, a short story, an article, etc. If the answer is "yes",
then the person already has prerequisites to learn how to write programs. If not, they can still try to write a
short story and assess their abilities to create or innovate.

Coding is just writing.

http://necemonyai.com/Blog/post/Writing-and-Programming-pretty-much-the-same-thing.aspx
https://www.linkedin.com/in/jpehouman
http://necemonyai.com/Blog/post/A-Quick-Guide-For-New-Bloggers.aspx
http://necemonyai.com/Blog/post/10-Years-of-Programming.aspx
http://necemonyai.com/Blog/post/8-reasons-why-you-would-enjoy-being-a-programmer.aspx
http://necemonyai.com/Blog/post/Interview-In-The-Bubble-Of-Israel-Yoroba-I-am-president-elite-serial-entrepreneur-veteran-blog-trotter-catalyst-for-change-in-our-generation.aspx
http://necemonyai.com/Blog/post/Interview-In-The-Bubble-Of-Israel-Yoroba-I-am-president-elite-serial-entrepreneur-veteran-blog-trotter-catalyst-for-change-in-our-generation.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/Babi-Fraya-The-Hot-Winter-Illusion.aspx
http://necemonyai.com/Blog/post/Babi-Fraya-The-Hot-Winter-Illusion.aspx
https://blog.codinghorror.com/coding-its-just-writing/

 Software Development and Engineering | 15

The NeceMoon Album, Volume 2, Page 15

On Technical Orientation : 5 Basic Considerations When Starting To
Code
By Necemon

A fresher sent me the following query:
Hi Necemon, thank you for accepting my invite. I am new to the IT field and I would appreciate if you
could give me some guidance. Based on your work experience, can you tell me what companies look for
in a computer guy ?
I heard about you from senior students at Christ University, I am in Bangalore and I like computer science
but I do not know what to learn and how to begin.
Actually, I think I like programming but I am told that the C language is no longer relevant, and I am also
told about Ruby, C#, Python, etc. I'm confused.

Please don't get confused. Technology is simply a way to solve a problem or to achieve a goal. What is your
goal?
Create apps? What apps do you want to create and why?
It's a bit as if you come to me to ask me what vehicle you should be driving. If I ask you what you want to do
with that vehicle, you wouldn't just tell me that you just want to move away, right? I know you want to
move... My question is, where are you going?

What companies are looking for ? Ok, I fully understand what you are asking here. You want to make sure
your education will guaranty an interesting job later in the IT development Industry. Obviously, I could tell
you that a certain technology T is in high demand right now, but it's not that simple. There are a few other
things to consider:

1. The requirements may vary with location (country or region). The hottest jobs in the US are not
necessarily that popular in India. So unless you know already where you are going to work, it's not that easy
to target on a trend basis.

2. The demand changes with time. What is relevant today may not be (as) prevalent tomorrow. The
technologies evolve and replace each other. So what's fashionable now might be different from what will
be popular by the time you get your degree.

http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/
https://en.wikipedia.org/wiki/Freshman
http://www.christuniversity.in/
http://necemonyai.com/blog/post/8-reasons-why-you-would-enjoy-being-a-programmer.aspx
http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
http://necemonyai.com/blog/post/Marketing-For-Programmers.aspx
http://necemonyai.com/Blog/post/5-lessons-I-learned-from-my-internship-at-General-Electric.aspx
http://necemonyai.com/blog/post/Useful-Job-Search-Websites-For-Programmers-In-The-UK.aspx

 Software Development and Engineering | 16

The NeceMoon Album, Volume 2, Page 16

3. You might not like the technology in vogue or the uses of that technology. If I tell you that a given
technology T is in high demand, that it allows you to locate and fix bugs / errors in a super boring / huge /
complicated banking system, plus there are plenty of calculations... What if you don't like calculations? Are
you still going to embrace this technology and to accept this path for the rest of your career?

4. Even if we consider only one city and a given time, various companies are seeking different
things, depending on what they do. There is no perfect technology that is better than all others in all areas.
Each technology has its own sets of advantages and disadvantages. C and C ++ may be better than Ruby at a
few things (and vice versa), Python is better than C# in some respect (and vice versa), etc.

5. As I said above, the technology is just a mean to get somewhere. When you consider Facebook for
example, most users don't care if it was built with PHP, C, Java, Perl, C # or Python. What is important for
people is, how the site or application can help them in their lives.

I think that's where you should start. What strengths and assets do you already have? (don't tell me you
don't have any). What contribution do you intend to come up with for your family, your friends, your
community, your country, and for the world? And what do you expect in return?

If you do not know what to do with your life, some time ago I wrote an article that might inspire you : What
will you do in life? Take time to reflect on your ambitions and we can talk about the resources you will
need.

If you know WHAT you want to do, it would be easier for me to tell you HOW to do it.

Let's speak soon,

N.

UPDATE - Shabbir Kahodawala shared a few clever insights on this matter :

I agree very much with your response to the fresher - about the need to realise and work on his talents and
concentrate on writing good code and immersive UI.
I would like to add a few points as well taking the perspective that every Indian student goes through the
same dilemma due to lack of job oriented education, because institutions focus on technical oriented
education.

IT is not only about writing code. Think of it as a factory where there is Marketing, Client Requirement
gathering, Planning, Product development, Product Testing, Infrastructure planning, Product Deployment,
Product Maintenance, Customer Support, Issue Resolution and Product Improvements.

Each of these creates many job opportunities for IT students and one needs to understand where his
strengths lie. He can do that by talking to IT professionals who can introduce to other professionals in each
department and willing to share what skills they require on today's world. That will make his goals more
clear.

Secondly, a competitive IT professional should always have his basics right. To be able to write good and
neat code. He should be always able to visualize a requirement into an algorithm and then the language
syntax ǘƘŀǘ ƘŜ ǳǎŜǎ Ŏŀƴ ŀƭǿŀȅǎ ŎƘŀƴƎŜΦ ¢ƘŀǘΩǎ ǿƘȅ ŎƻƭƭŜƎŜǎ ǘŜŀŎƘ / ϧ WŀǾŀ όƻōƧŜŎǘ ƻǊƛŜƴǘŜŘύ ōŜŎŀǳǎŜ ǘƘŜǎŜ
help a coder develop his basics about Data Handling, Functions, Objects, Classes and runtime environment.

https://www.facebook.com/necemon
http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
http://necemonyai.com/blog/post/What-will-you-do-in-life-.aspx
http://necemonyai.com/blog/post/What-will-you-do-in-life-.aspx
https://in.linkedin.com/in/shabbirzk

 Software Development and Engineering | 17

The NeceMoon Album, Volume 2, Page 17

4 Substantial Tactics Guaranteed To Boost Your Game Creation Skills
By Necemon

A user of one of my web applications sent in the following question:
Hi my name is T. and I am 15, when I am older I want to be a part of the gaming industry and I am just
wondering can you guys help with that, can you give me any tips or any experience?
Would posting to your website help me out in this? I would love to hear your reply, it would really help
me out.

Here was my reply:

There is a lot to say on the topic but for today I will try to keep it simple and give you some practical advice
you can start using right away.

1. Read a lot on the topics you are interested in. Read every day if you can. There are tons of free
resources available online, some of my favorite sites and blogs for game creation are:
gdne.ws
lostgarden.com
procworld.blogspot.co.uk
whatgamesare.com
gamestudies.org
designer-notes.com
higherorderfun.com
gamecareerguide.com
webwargaming.org
raphkoster.com/gaming
gamedevelopment.tutsplus.com
nwn.blogs.com

http://necemonyai.com/Blog/post/4-Substantial-Tactics-Guaranteed-To-Boost-Your-Game-Creation-Skills.aspx
http://necemonyai.com/
http://necemonyai.com/blog/post/Flux-Project-Social-News-Web-Applications.aspx
http://www.gdne.ws/
http://www.lostgarden.com/
http://procworld.blogspot.co.uk/
http://www.whatgamesare.com/
http://gamestudies.org/
http://www.designer-notes.com/
http://higherorderfun.com/
http://www.gamecareerguide.com/
http://www.webwargaming.org/
http://www.raphkoster.com/gaming/index.shtml
http://gamedevelopment.tutsplus.com/
http://nwn.blogs.com/

 Software Development and Engineering | 18

The NeceMoon Album, Volume 2, Page 18

2. Establish specific goals. You may have noticed that in point 1, I only gave you a small portion of what's
out there, but it's quite an extensive read already. We are living exponential times, you can't do and learn
everything by yourself at once. You have to be specific about what you want. Vague plans provoke vague
results. What is it that you want to do in the video game industry? There are so many options, you may
want to do some research on your options.

3. Pick your stars. To bounce back from the previous point, after you make a list of the skills you want to
master, do some research on people who are already really, really good at that. Find some role models, see
how they started and how they made it. Combine their tricks and throw in your own style to develop your
own skills. It may take months but if you practice consistently, you will get really good too. Some of the
people you can check out:

Game development:
- Shigeru Miyamoto
- Hideo Kojima
- Notch (Markus Persson)

Digital artists:
- Akira Toriyama
- Masashi Kishimoto
- Monty Oum

Scenario writers:
- J.K. Rowling
- Stephen King
- Tom Clancy

4. Make a game. No, you are not too young to start. It doesn't have to be anything big and right now, you
can at least start learning. The earlier you start, the more time you will have to practice and the sooner you
will become excellent. You can start with something very basic or at least start reading about it. If you want
advice on how to start, how to find tutorials and resources, I can help.
On a related note, I made a game myself : babifraya.com It's not great and I am working on an improved
version. But the important thing is to start and keep practicing :-)

In short, educate yourself consistently.

As to whether posting to degammage.com would help, my honest answer is: maybe.
You see, it's a new project with a small community and it's too early to say how successful it will be.
However, there will be some fresh content everyday, so there will be things for you to learn, and you may
also visit flux.evasium.com which is even more into virtual worlds, education and technology.
Your Evasium account will work on there too.

Additionally, you may want to join other game forums and communities, like the ones I listed above. The
more you learn, the better!

http://necemonyai.com/blog/post/The-Effects-of-Accelerated-Evolution-and-Information-Overloading-did-you-know.aspx
https://en.wikipedia.org/wiki/Shigeru_Miyamoto
https://en.wikipedia.org/wiki/Hideo_Kojima
https://en.wikipedia.org/wiki/Markus_Persson
https://en.wikipedia.org/wiki/Akira_Toriyama
https://en.wikipedia.org/wiki/Masashi_Kishimoto
https://en.wikipedia.org/wiki/Monty_Oum
https://en.wikipedia.org/wiki/J._K._Rowling
https://en.wikipedia.org/wiki/Stephen_King
https://en.wikipedia.org/wiki/Tom_Clancy
http://www.tobiasgame.co.uk/
http://babifraya.com/
http://necemonyai.com/blog/post/The-5-Most-Terrific-Motivation-Tips-From-Monty-Oum.aspx
https://degammage.com/
http://flux.evasium.com/
http://evasium.com/

 Software Development and Engineering | 19

The NeceMoon Album, Volume 2, Page 19

10 Years of Programming
By Necemon

I started programming when I was in high school. I was taught Pascal and HTML among other things. But I
was also taking some summer programming classes in an IT institute. That's where I learned Visual Basic
and software/database design (during those days, we were using MERISE (Méthode d'Etude et de
Réalisation Informatique pour les Systèmes d'Entreprise)). I eventually got Visual Basic installed on my
home computer and a book from which I could practice alone, with books.
But, it's only after I graduated from high school, that I started learning and applying C# almost full time
during higher studies, and that's what I considered to be my real start into programming and software
engineering.
I learned a few lessons over the past decade, and I thought I would take a moment to gather my thoughts
on these things. It took me about ten years and a lot of experimentation to figure out some of this.

1. Learning a programming language is the easy part: be aware and beware of the platforms
Take C# for example. Learning the C# language is not difficult. If you already have a good understanding of
computer language fundamentals, and if you have some experience in other object-oriented
languages, you can become a competent C# programmer within a few days, at least as far as the language
itself is concerned. However, the real price to pay is not about the language, it's about the platform. To
develop with C# on .NET, you need to know:
 - the .NET framework
 - one or more .NET technologies such as ASP.NET or WPF
 - and the Visual Studio development environment.
The time required to become proficient in .NET development is usually measured in months, even for an
experienced developer. Learning a platform is always more expensive than learning a specific language,
therefore choosing the platform is the most crucial decision.
Learning always has a cost and this cost is one of the key factors to consider when choosing the technology
you want to learn. The real cost of learning is in time, learning always takes time. Since you do not have
time to learn everything, it is important to think strategically about what you want to learn. And since the
languages are easy, it's the platforms that you have to be careful about: the technologies associated with
the language, the development and deployment tools, the operating systems, and other infrastructures.

http://necemonyai.com/Blog/post/10-Years-of-Programming.aspx
http://necemonyai.com/
http://necemonyai.com/Blog/post/8-reasons-why-you-would-enjoy-being-a-programmer.aspx
http://necemonyai.com/Blog/post/C-Sharp-Free-Learning-Resources-For-Beginners-And-Professionals.aspx
http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
http://necemonyai.com/Blog/post/Microsoft-Professional-Certifications-for-Developers.aspx
http://necemonyai.com/Blog/post/Deploying-a-Web-App-to-IIS-Windows-Server-In-7-Clever-Steps.aspx

 Software Development and Engineering | 20

The NeceMoon Album, Volume 2, Page 20

2. I repeat, learning a programming language is the easy part: meet the underlying concepts of software
engineering
The syntax itself, the words you use when applying the language are relatively simple and you can easily
pick them up as you go. However, that's far from being enough for producing quality code, which often
involve OOP and SOLID principles, unit testing, design patterns, TDD, BDD, and other technical concepts
which are beyond the scope of this article. Anyway...

3. Actually writing code is only one (small) part of the job
A software engineer is often expected to be involved into technology research, tools and projects
configurations, DevOps and admin tasks, debugging and testing procedures, documentation, and technical
debt (fixing and refactoring existing code). Also, they have to be thinking about solutions and designing
systems : sometimes the most important work is done away from a keyboard.

4. Tried and true : old and boring is sometimes the best.
It's not so much old vs new, or cool vs boring, but rather the thing you are most experienced with. As they
say, I trust not the developer who practiced 1000 technologies once, but I trust the developer who
practiced the relevant technology 1000 times. If the goal is to "just build the damn thing", go with a stack
you would be most productive in.
For example, one of my contacts is making $25,000 per month with a SaaS that was built on boring
ASP.NET+SQL Server+Angular 1 because that's what he knew. he hosts it on Windows because he knows
how to make it fast and secure. He succeeded by focusing all his time on building the features that clients
were asking for, instead of learning fancy tech.
It's important to realise that the technological treadmill never stops. Yet another JavaScript framework
could have been launched while you are reading this. Today's cutting edge tech didn't even exist when I
was getting started (EF Code First, Xamarin, ASP.NET Core, Razor), and this leads us to the 2 next points.

5. Focus on sustainable technologies
The only constant in the world is change. Actions and time management is an important skill for
developers, particularly because we are on a technological treadmill that keeps moving or even
accelerating.
For example, Web technologies that were popular around the year 2000 (Flash, ASP Classic and Java
Applets) are becoming almost obsolete and decreasingly marketable. Today, we are talking about ASP.NET
Core, SignalR, Angular2, React and VueJS. None of its technologies existed in the year 2000, and these new
technologies are likely to be obsolete within 10 years.
What hasn't really changed? The fundamentals of languages such as C++/C#, their implementations of
algorithms and their principles are still relevant after several decades. If you master the basics of a stable
system, you could adapt to change better, you could appreciate it and use it to evolve.

http://necemonyai.com/Blog/post/5-lessons-I-learned-from-my-internship-at-General-Electric.aspx
http://necemonyai.com/Blog/post/Paper-Prototyping.aspx
http://necemonyai.com/Blog/post/The-Effects-of-Accelerated-Evolution-and-Information-Overloading-did-you-know.aspx
http://necemonyai.com/Blog/post/My-12-Favorite-Entity-Framework-Tricks.aspx
http://necemonyai.com/Blog/post/The-Xamarin-Revolution.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx

 Software Development and Engineering | 21

The NeceMoon Album, Volume 2, Page 21

6. Balance between exploration and exploitation
Exploration is about learning new things, studying new techniques, reading books, watching video tutorials,
practicing and improving skills. Exploitation however, is to take advantage of what we already know to
solve real life issues. It's about thinking creatively about ways to use the knowledge we already have to
create value for others.
So yes, both of these tasks are both necessary and important. The risk is to be too focused on either
activity.
Too much exploration, and you will never achieve a useful level of expertise in the chosen technology.
There is a huge opportunity cost with this kind of light learning, because, although it expands your mind,
the time it takes implies that you don't really improve on the skills that you have already acquired.
On the other hand, too much exploitation can keep you from evolving in new technologies, and can limit
your employment opportunities.

тΦ LǘΩǎ Ŝŀǎȅ ǘƻ ōŜ ƎǊŜŀǘΦΦΦ LǘΩǎ ƘŀǊŘ ǘƻ ōŜ ŎƻƴǎƛǎǘŜƴǘ
It's easy to be great for 2 minutes. It's hard to stay great constantly, every day.
When you have a good idea for a new project, you feel a great desire to start researching, designing and
programming. You feel a rush to turn your idea into something real and you become super productive. But
the problem is that this motivation fades over time.
Yes, it's fun and it's easy to have new ideas and start working on them. But then there are the efforts to be
made, the adjustments, the launch, the maintenance, the corrections, the improvements, and so on. Over
several months. This is where it gets hard. It is hard to stay focused on the same idea, on the same project
for months and years. It takes a lot of discipline.
LǘΩǎ Ŝŀǎȅ ǘƻ ōŜ ƎǊŜŀǘΦ LǘΩǎ hard to be consistent.

8. Diversify your skills
Don't be just a programmer, become an Expert Who Programs, an expert in another relevant field that you
are passionate about. You can be an entrepreneur, a project manager, a Big Data scientist, a researcher, a
security specialist, etc. If you are an Expert Who Program, in addition to being able to program (maybe full-
time), you also have an additional credibility that is related to something other than software engineering.
Hence the importance of getting an education. If you go to university and you already know how to
program, you probably won't learn much about programming. That does not mean you should not go to
these schools. You will need some culture, and universities are great places to get that. You acquire culture
by studying and understanding the world that humans have created, from different angles. It would be
difficult to acquire this kind of knowledge if you do nothing but study programming.

9. Pick your niches and standout
The smaller the niche you choose, the greater your chance of being viewed as a standout in your field. It's
very hard for a developer to become a standout in "PHP Web development". They're great, versatile,
useful, but not noteworthy. One developer who knows how to work with these technologies, feels they are
easily replaceable because there are so many out there with a comparable skill set. These areas are too
broad for you to easily standout from the pack. If, on the other hand, you become known for a niche,
like Xamarin.Forms or JavaScript Visualisations you're much more likely to be valuable to those looking
specifically for that skills set.

http://necemonyai.com/Blog/post/On-reading-books-and-self-education-My-Essentials-(part-2).aspx
http://necemonyai.com/Blog/post/My-Essentials-Top-12-Tech-Courses-on-Pluralsight-for-NET-Developers.aspx
http://necemonyai.com/Blog/post/My-Essentials-Top-12-Tech-Courses-on-Pluralsight-for-NET-Developers.aspx
http://necemonyai.com/Blog/post/Furtivue-(Or-How-To-Send-Furtive-Messages-Like-A-Ninja).aspx
http://necemonyai.com/Blog/post/Furtivue-(Or-How-To-Send-Furtive-Messages-Like-A-Ninja).aspx
http://necemonyai.com/Blog/post/Where-to-Find-Free-Quality-Audio-Books.aspx
http://necemonyai.com/Blog/post/The-5-Most-Terrific-Motivation-Tips-From-Monty-Oum.aspx
http://necemonyai.com/Blog/post/Inside-Bavardica-Part-1-Discussion-of-the-subject-areas.aspx
http://necemonyai.com/Blog/post/Inside-Bavardica-Part-1-Discussion-of-the-subject-areas.aspx
http://necemonyai.com/Blog/post/Phidgets-First-Steps-In-Robotics.aspx
http://necemonyai.com/Blog/post/Exploring-Some-Advanced-Visualisation-Techniques.aspx
http://necemonyai.com/Blog/post/Marketing-For-Programmers.aspx
http://necemonyai.com/Blog/post/Top-8-Tricks-with-Xamarin-Programming.aspx

 Software Development and Engineering | 22

The NeceMoon Album, Volume 2, Page 22

10. Age of Skills
Information is the specific knowledge that you need to solve problems. Skills represent the ability to
implement solutions using your knowledge.
In a world where most of the knowledge and tools are virtually free, what makes the difference? The skills,
of course. We are no longer a knowledge-based society, we are a skills-based society. There was a time
when almost all university degrees guaranteed a good job. Now this is no longer the case. Nobody cares
about what you know. People care about what you can do. They pay you to do things, not to know things.

Teach yourself programming in 10 years.
Researchers have shown it takes about ten years (or 10 000 hours) to develop expertise in a field.
The solution is reflective practice: it's not enough to repeat the same things over and over again, but
challenging yourself with a task that exceeds your current ability, to try it, to analyze its performances
during and after, and to correct all error. Then repeat. And repeat again. It seems there are no real
shortcuts. Learning through reading is good. But getting your hands dirty in practice is better. The best type
of learning is learning by doing.
Personally, small projects and prototypes actually helped me improve. But there are still interesting things
to master, therefore let's keep learning.

http://necemonyai.com/Blog/post/C-Sharp-Free-Learning-Resources-For-Beginners-And-Professionals.aspx
http://necemonyai.com/Blog/post/Starting-a-New-Job-12-Tips-for-a-Brilliant-Outset.aspx
http://necemonyai.com/Blog/post/10-things-I-learned-from-building-bavardica.aspx
http://necemonyai.com/Blog/post/4-Substantial-Tactics-Guaranteed-To-Boost-Your-Game-Creation-Skills.aspx
http://necemonyai.com/Blog/post/4-Substantial-Tactics-Guaranteed-To-Boost-Your-Game-Creation-Skills.aspx
http://necemonyai.com/Blog/post/Babi-Fraya-The-Hot-Winter-Illusion.aspx

 Software Development and Engineering | 23

The NeceMoon Album, Volume 2, Page 23

Should you build it if nobody comes?
By Darren Mart

Not long ago I received an E-mail from an energetic and talented developer who was tackling an ambitious

software project. He asked if I had any advice to pass along.

It all came flooding back. The daydreams. Springing out of bed in the dead of night because an idea can't

wait. Months of painstaking work, coaxing that baby from rolling to wobbling to walking on its own. All of

this for an eager audience. Except...

The cycle after the cycle

I must have drafted a half-dozen responses to his mail. I admired his enthusiasm and understood where his

head was. But I also knew what likely awaited him after the arduous development cycle: another cycle of

turbulence, a series of clashes between expectations and unfortunate realities.

Where did it all go wrong?

This is a dangerous question we ask ourselves as developers. "Dangerous" because it carries the

assumption that we did something wrong. It's entirely possible that what you've crafted is quite good,

maybe even brilliant. The issue may have nothing to do with the quality of your work, rather your criteria

for success.

So how does a developer accurately gauge the success of a solo project? I wish I had a concrete answer to

that. Instead I can offer a few tips on how not to gauge it:

https://web.archive.org/web/20130911122315/http:/darrenmart.com/blog/139/should-you-build-it-if-nobody-comes
http://darrenmart.com/

 Software Development and Engineering | 24

The NeceMoon Album, Volume 2, Page 24

Tip 1: Beware the social platform sirens

Ah, but they lure us in with the promise of mass consumption and acceptance. We seldom consider their

ability to trample our spirits. It's possible that you'll spend months on a project, share it on Facebook with

the vigor and excitement of a dog with a chew toy, and then watch the "Like" count soar to... 3. One of

those came from your mother, another from a page you made to promote your project, and the other from

an errant tap on a cell phone.

It's the same chilling effect you get from photos of abandoned amusement parks. You strain to imagine

giggles of delight and unbridled excitement, and you struggle to accept what's staring you right in the face.

Meanwhile, your friend's profound status of "I like ravioli!" earns 23 likes and 16 comments. Popularity and

substance are two different things, and we'll just have to live with that.

Tip 2: The apathy isn't personal (it might not even be apathy)

You're already aware of this but it helps to be reminded. Most people have no concept of what it takes to

pull off what you've accomplished. They don't realize you single-handedly built something that'd rival the

efforts of an entire team. You can't, and won't, make them genuinely care.

Apps that set the world on fire generally fall under two categories: those that help users promote

themselves, and those that require little thought. If your project requires a mental investment greater than

that of Candy Crush Saga, here's the harsh reality: you're gonna end up with a lot of leftovers at your

launch party.

 Software Development and Engineering | 25

The NeceMoon Album, Volume 2, Page 25

Tip 3: Think twice before soliciting feedback from your peers

In the film Midnight In Paris, aspiring writer Gil asks Ernest Hemingway to read his novel and offer an

opinion.

HEMINGWAY: My opinion is I hate it.

GIL: You do? But you haven't even read it.

HEMINGWAY: If it's bad I'll hate it because I hate bad writing and if it's good I'll be envious and hate it all

the more. You don't want the opinion of another writer. Writers are competitive.

Don't overlook the profundity of this exchange. It applies to developers, too.

Tip 4: Like it or not, you're an artist

If you pour your heart and soul into solo projects because you enjoy the creative challenge, you're an artist.

If you do it because you're attempting to solve a problem, you're probably an artist-engineer hybrid. If you

do it strictly for the money, you bailed on this article a long time ago so it doesn't matter what I call you.

Just like the painters and writers and decorators and gourmet chefs of the world, we secretly hope the

public will be elevated and inspired by our creations.

 Software Development and Engineering | 26

The NeceMoon Album, Volume 2, Page 26

But there's a key difference. If someone isn't inspired by a painting, they'll still able to appreciate the

individual effort. With software there's no such luxury. It doesn't matter if you're the Rembrandt of the

coding world; your app is a dud compared to Office 365 or Google Maps or Skyrim, never mind the fleet of

resources required by the latter.

So... should you build it if nobody comes?

Yes. Because as artists, we are enriched by the overall process regardless of the end result. Trite as it

sounds, we have the sense of accomplishment and the pride of knowing how much discipline it took to see

it all the way through. We stimulated our minds, we learned what does and doesn't work, we gained

applicable experience. The next project, whether it's personal or professional, will reap the rewards.

 Software Development and Engineering | 27

The NeceMoon Album, Volume 2, Page 27

Useful Job Search Websites For Programmers In The UK
By Necemon

Job boards are websites that facilitate job hunting.

There are many career websites designed to allow employers to post job requirements for a position to be
filled; prospective employees can locate and fill out job applications and/or submit digital resumes for the
advertised positions. Those sites may also offer employer reviews, career and job-search advice, and
describe different job descriptions or employers.

As a technology specialist in the UK, here are some of the websites I found helpful in the past few years.

Graduates

targetjobs.co.uk
Graduate jobs and schemes. Internships and placements. Great advice to help you get hired.

eurograduate.com
Featuring thousands of graduate careers and job opportunities across Europe.

insidecareers.co.uk
DǊŀŘǳŀǘŜ ƧƻōǎΣ ƛƴǘŜǊƴǎƘƛǇǎΣ ǇƭŀŎŜƳŜƴǘǎ ŀƴŘ ǎŎƘƻƻƭ ƭŜŀǾŜǊ ǎŎƘŜƳŜǎ ŀǎ ǿŜƭƭ ŀǎ ŎŀǊŜŜǊ ŀŘǾƛŎŜ ōȅ ǎŜŎǘƻǊΦ

milkround.com
The UK's most widely used student and graduate job website.

prospects.ac.uk
Prospects for graduate jobs, postgraduate study, advice about work experience, internship opportunities
and graduate careers.

http://necemonyai.com/Blog/post/Useful-Job-Search-Websites-For-Programmers-In-The-UK.aspx
http://necemonyai.com/
http://targetjobs.co.uk/
http://eurograduate.com/
http://www.insidecareers.co.uk/
http://www.milkround.com/
http://prospects.ac.uk/

 Software Development and Engineering | 28

The NeceMoon Album, Volume 2, Page 28

IT World

uk.dice.com
Formerly The IT Job Board. UK Contract and Permanent IT Jobs

purelyit.co.uk
Lots of contract and permanent IT Jobs including Software Engineer, IT Director, Senior Web Developer and
many more.

computerjobs.com
Specialising in Permanent and Contract IT jobs in the UK with thousands advertised daily.

cwjobs.co.uk
One of the leading UK IT job board. Search information technology jobs and apply online.

currentitjobs.co.uk
Formerly findingitjobs.co.uk. IT job board focused on providing the best IT Jobs in London.

stackjobs.co.uk
A trending IT job board in the UK with effective IT recruitment solutions.

Science and Engineering

newscientistjobs.com
Technology and science jobs, courses and career advice.

naturejobs.com
Featuring access to job listings, editorial content about scientific careers and other information.

justengineers.net
A wide range of Engineering Jobs in the UK and Worldwide.

engineeringjobs.co.uk
Latest Engineering Jobs from across London and the UK.

General Job Search Sites

reed.co.uk
One of the leading UK job sites.

monster.co.uk
Possibly the most popular job site worldwide. Resources to create a killer CV, search for jobs, prepare for
interviews, and launch your career.

jobserve.com
Powerful, quick job search. Specialising in permanent and contract jobs in the UK with thousands
advertised daily.

http://uk.dice.com/
http://theitjobboard.co.uk/
http://www.purelyit.co.uk/
http://www.computerjobs.com/
http://www.cwjobs.co.uk/
http://www.currentitjobs.co.uk/
http://findingitjobs.co.uk/
https://stackjobs.co.uk/
http://newscientistjobs.com/
http://www.nature.com/naturejobs/science/
http://www.justengineers.net/
http://engineeringjobs.co.uk/
http://www.reed.co.uk/
http://www.monster.co.uk/
http://www.jobserve.com/

 Software Development and Engineering | 29

The NeceMoon Album, Volume 2, Page 29

jobs.ac.uk
UK & international job search for academic jobs, research jobs, science jobs and managerial jobs

totaljobs.com
Instant job matches, alerts and more from UK companies and recruiters.

topjobs.co.uk
Searchable database of vacancies by type and region.

neuvoo.co.uk
Presumably, your job search starts here.

jobs.trovit.co.uk
Job ads from thousands of websites in just one search.

jobbydoo.co.uk
Aggregating, analyzing and listing job openings from more than 1,000 sources, including UK career sites, job
boards and recruitment agencies.

http://www.jobs.ac.uk/
http://www.totaljobs.com/
http://topjobs.co.uk/
http://www.neuvoo.co.uk/
http://jobs.trovit.co.uk/
https://www.jobbydoo.co.uk/

 Software Development and Engineering | 30

The NeceMoon Album, Volume 2, Page 30

Microsoft Professional Certifications for Developers
By Necemon

Microsoft offers a wide range of online certification programs designed to help you grow your skills and
your career.

This article will focus on developer certifications. Microsoft Certified Solutions Developer (MCSD) is a
certification intended for IT professionals seeking to demonstrate their ability to build innovative solutions
across multiple technologies. For example, the MCSD App Builder certification validates that you have the
skills needed to build modern mobile and/or web applications and services.

I got my first Microsoft Certification back in 2008. I have been upgrading over the years and I am now a
Certified Solution Developer. Was it worth it? Sometimes it didn't matter, sometimes it was pretty useful.
In my experience, here are 5 advantages of getting certified:
 - Getting a Microsoft ProŦŜǎǎƛƻƴŀƭ /ŜǊǘƛŦƛŎŀǘƛƻƴ ŘƻŜǎƴΩǘ ƎǳŀǊŀƴǘŜŜ ŀƴȅǘƘƛƴƎ ŀōƻǳǘ ƎŜǘǘƛƴƎ ŀ ƧƻōΣ ŀ ǊŀƛǎŜ ƻǊ
a promotion but it does increase the odds.
 - When hiring someone new, some companies check out his certifications as well as experience. Many
hiring managers verify certifications among job candidates and consider those as part of their hiring
criteria. Some consider IT certifications a priority when hiring for IT positions.
 - Getting a certification can boost your self-confidence, your confidence about your skills.
 - It shows seriousness and passion (you did it all because you wanted to, not because you had to).
 - The process of preparing for the certification increases your theoretical and practical skills.

http://necemonyai.com/Blog/post/Microsoft-Professional-Certifications-for-Developers.aspx
http://necemonyai.com/
https://www.microsoft.com/en-gb/learning/certification-overview.aspx
https://www.microsoft.com/en-gb/learning/mcsd-app-builder-certification.aspx

 Software Development and Engineering | 31

The NeceMoon Album, Volume 2, Page 31

Exam and preparation tips
My key recommendation is to dedicate a specific period to prepare right before the exam. Get some books,
attend a course (virtual courses as a personal preference, but classroom courses available) and practice the
technologies involved.
 - Books: there are often preparation books related to the given exam. Example: Exam Ref 70-480:
Programming in HTML5 with JavaScript and CSS3
 - Classes : The most popular exams have short courses available online. Example: Course 20480B:
Programming in HTML5 with JavaScript and CSS3
 - Beyond the training material: researching the topics involved
 - Actually practicing the technologies
 - Answering to multi choice questions: Proceed by elimination. In case of doubt about the right answer,
ŜȄŎƭǳŘŜ ǘƘŜ ŀƴǎǿŜǊǎ ǘƘŀǘ ŘƻƴΩǘ ƳŀƪŜ όŀƴȅύ ǎŜƴǎŜΣ όƻǊ ǘƘŀǘ ƳŀƪŜǎ ƭŜǎǎ ǎŜƴǎŜύΦ

Career paths for developers
Make sure you double check that part. They keep updating the offers based on the latest technology but at
the time of writing this, there are 5 options for MCSD (Microsoft Certified Solutions Developer)
 - MCSD: Web Applications. Expertise in creating and deploying modern web applications and services.
 - MCSD: Windows Store Apps. Expertise at designing and developing fast and fluid Windows 8 apps. There
are two paths to achieving this certification-using HTML5 or C#.
 - MCSD: SharePoint Applications. Expertise at designing and developing collaboration applications with
Microsoft SharePoint.
 - MCSD: Azure Solutions Architect. Expertise covering the full breadth of designing, developing, and
administering Azure solutions.
 - MCSD: Application Lifecycle Management. Expertise in managing the entire lifespan of application
development.

Certification Planner
The Certification Planner is a tool to help you know what requirements are necessary to achieve your next
ŎŜǊǘƛŦƛŎŀǘƛƻƴΦ LǘΩǎ ŀōƻǳǘ ǇƭŀƴƴƛƴƎ ȅƻǳǊ ƴŜȄǘ ǎǘŜǇǎ όȅƻǳǊ ƻǇǘƛƻƴǎΣ ǿƘƛŎƘ ŜȄŀƳǎ ǘƻ ǘŀƪŜΣ ƛƴ ǿƘƛŎƘ ƻǊŘŜǊύΦ

Other links of interest
MCSD Certification
Web Apps certification
Wikipedia Page

That's it for now. Now get back to work.

http://www.amazon.co.uk/Exam-Ref-70-480-Programming-JavaScript/dp/0735676631
http://www.amazon.co.uk/Exam-Ref-70-480-Programming-JavaScript/dp/0735676631
https://www.microsoft.com/learning/en-us/course.aspx?ID=20480B
https://www.microsoft.com/learning/en-us/course.aspx?ID=20480B
https://mycertificationplanner.one.microsoft.com/
https://www.microsoft.com/learning/en-us/mcsd-certification.aspx
https://www.microsoft.com/learning/en-us/mcsd-web-apps-certification.aspx
http://en.wikipedia.org/wiki/Microsoft_Certified_Professional

Chapter 7

C# .NET Programming
C # . N E T P r o g r a m m i n g

Featuring Holty Sow

 C# .NET Programming | 33

The NeceMoon Album, Volume 2, Page 33

Why I like C# so much
By Necemon

If you are not into programming, I need to start by telling you that a programming language is basically an

artificial language (system of communication) designed to communicate instructions to a machine, typically

a computer.

Now there are a lot of programming languages out there. Some are more popular than others, some are

more recent, some are more powerful to some extent.

In an ideal world, each programming language serves a specific purpose. So an engineer should be able to

adapt to the on going project and choose the optimal technologies. But the truth is, we very often tend to

feel comfortable with some languages and find some others kind of painful. It depends on the features of

the language and how long we have been using it. It's a bit like natural languages (human languages). You

may learn many languages (French, Italian, Spanish, German, Japanese, etc.) and wherever you go, there

will be one language that would be more relevant and that you would have to use, but as a native English

speaker, you would mostly feel more comfortable speaking English than anything else. If you get in a non

English speaking country, you may sure have to adapt to the local language but you would feel some relief

when you meet people you can speak English with, as this is what comes naturally to you.

The difference is that you don't choose your main human language. It's generally the language they speak

at the place you were born and grew up, the language your parents speak, the language your friends and

teachers speak at your school, etc.

Programming languages are a different matter. Programmers do choose to learn a language, even though

their motivations may be different. What I want to discuss here is, why and how people choose their

programming languages ? What's the best way to go about it ?

From what I observed, there are 2 main reasons people go for a specific language:

- social proof: I guess this concern mostly the beginners, when you want to learn programming for the first

time, you don't know much about the languages but you got to start somewhere. So you just go for the

language that's popular among your friends, your lecturers/mentors or at your school/college. In short, you

go for the languages you are most exposed to or you take advice from people around you. The upside is

that you would definitely be surrounded with people who are into the same technologies so they will be

able to guide and support you, work along with you on same projects. It's a bit like choosing to buy a

specific video game console because all your friends have the same. Suppose you get stuck at some level,

there is probably one of your friends that can tell you what to do. Plus you can exchange games with them,

discuss game news & cheat codes, enjoy playing together. In short, you become part of the community and

it goes pretty much the same when it comes to choosing a language.

http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
http://necemonyai.com/
http://necemonyai.com/Blog/post/8-reasons-why-you-would-enjoy-being-a-programmer.aspx
http://necemonyai.com/Blog/post/What-will-you-do-in-life-.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx

 C# .NET Programming | 34

The NeceMoon Album, Volume 2, Page 34

- project requirement: throughout their career, developers come across many projects they are compelled

to do. The requirements may lead them to learn other languages and technologies, for example, if you

work for some company and they assign you to work on that new Python project, you would need to learn

Python. Even if you are an independent developer, you may learn another language as it becomes popular

with your customers or as it better meets the needs of your users (in terms of speed or user experience for

example).

Personally, I think both reasons are valid points. Regarding the first reason, I would just add that it's not

about following the trend just for the sake of it. You should make some research to find out which language

will help you better do what you are trying to do. Regarding the second reason, I realise it is required to do

things that you don't really like but, as often as possible, I would advise you to use the technologies and

languages that you like better. If programming is your job, you better enjoy it. Do what you love, really.

Coming to my own experience, I guess I went for C#.NET firstly because it is very popular in the institution

where I started getting serious about programming (NIIT). But this is only the reason why I got introduced

to C#. There are many other reasons that keep me going.

The main reason being that I find it comfortable but not just because I had been using the most that time.

Anyway it wasn't my first programming language. I did program in VB and Pascal before, so it's not that I

got stuck to the first language I liked to use. By comfortable, I mean that I enjoy writing C# code. Personally,

I would rather write code if I have a lot of fun doing it than write code in some obscur language that's just

painful. It's true that we need to worry about things like performance and user experience but I believe that

one should enjoy what they are doing.

Now what's so cool about C# ? I won't be discussing how C# compare to other programming languages and

whether it's technically better or not. That's not the point of this article and as I said before there is no

perfect language, there is just a right language for the right circumstances. I will just say what make C# so

awesome to me (and probably to you as soon as you give it a try):

I can't help it, I need to mention that Visual Studio, the work environment for C#, is probably the world best

IDE. Automated features like IntelliSense and controls drag and drop save a lot of time and effort. It's not

being lazy, it's really about productivity. Whether you work solo or as a team, you always have some

important tasks that are not necessarily programming oriented. Automation helps you avoid spending time

and effort on the obvious, frequent, basic tasks and focus on the things that are most important.

The language itself is easy to grab, it follows the same kind of syntax that C, C++, Java, etc. So anyone with a

similar background can quickly get going. Also, it's known to be simple and elegant.

C# is powerful. It helps me make ANYTHING I want, whether it's a website, a web application, a web

service, a smart client application, a game, a windows application, a windows service or a in-browser

(Silverlight) application, etc. While most of the languages are used just for a specific purpose, either for the

http://necemonyai.com/Blog/post/Starting-a-New-Job-12-Tips-for-a-Brilliant-Outset.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/What-will-you-do-in-life-.aspx
http://necemonyai.com/Blog/post/10-Years-of-Programming.aspx
http://necemonyai.com/Blog/post/C-Sharp-Free-Learning-Resources-For-Beginners-And-Professionals.aspx

 C# .NET Programming | 35

The NeceMoon Album, Volume 2, Page 35

web server, for the client or for the browser, C# does it all. The obvious advantage is that you don't have to

learn a new language when you want to start a new kind of application.

Interoperability and language integration: C# applications and services can talk to each other. In fact, they

can communicate with any other .NET applications. For example, you can easily make a WPF C# application

get data from a WCF VB.NET service and pass it to a Silverlight C# application.

Well, now you know why I like C# so much...

http://necemonyai.com/Blog/post/The-Xamarin-Revolution.aspx

 C# .NET Programming | 36

The NeceMoon Album, Volume 2, Page 36

C# Free Learning Resources For Beginners And Professionals
By Necemon

C# (C Sharp) is Microsoft flagship programming language, hence its popularity in the tech industry. Used by
a large and growing number of professionals, it helps when building all kinds of applications.

A frequently asked question is, where do I start with C#, what are the best free courses?

Here are a few suggestions.

Microsoft Virtual Academy
C# fundamentals for absolute beginners. Step through 24 practical and easy-to-understand C# training
episodes. Tune in to learn the basics of the C# language, and learn to apply them in your programming
endeavors, like video games, mobile environments, and client apps.

learncs.org
Free interactive C# tutorial. Whether you are an experienced programmer or not, this website is intended
for everyone who wishes to learn the C# programming language. There is no need to download anything,
just click on the chapter you wish to begin from, and follow the instructions.

http://necemonyai.com/Blog/post/C-Sharp-Free-Learning-Resources-For-Beginners-And-Professionals.aspx
http://necemonyai.com/
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://necemonyai.com/blog/post/On-Technical-Orientation-5-Basic-Considerations-When-Starting-To-Code.aspx
http://necemonyai.com/Blog/post/Why-I-like-C-Sharp-so-much.aspx
https://mva.microsoft.com/en-us/training-courses/c-fundamentals-for-absolute-beginners-16169
http://www.learncs.org/

 C# .NET Programming | 37

The NeceMoon Album, Volume 2, Page 37

Solo Learn
The best way to learn to code is to code. Gain an understanding of C# concepts by going through short
interactive texts and follow-up fun quizzes. Their beautifully designed code editor lets you make changes to
existing code or write and run your own custom code and see the output on your mobile device. You can
code while going through the core lessons or as a stand-alone learning activity. The more you play, the
better you get!

Codeasy
A free interactive online course for learning to program C# language. It is designed for absolute beginners
and does not require any prior knowledge to start. It is really fun to learn with Codeasy just by reading an
adventure story about fighting machines in the future. While reading, the user meets challenges, which
require real coding to solve. User can write code directly on the website. The course consists of chapters,
like a real book. Each chapter has several tasks to solve by coding. The final goal is to become a
programmer and to save the world.

Visual Studio Dev Essentials
Free tools and free training. Free access to technical training from industry leaders such as Pluralsight,
Wintellect, and Xamarin University.

Channel 9
A Microsoft community site for Microsoft customers. It hosts video channels, discussions, podcasts,
screencasts and interviews. This includes courses like C# Fundamentals for Absolute Beginners.

Bonus : Top Youtube playlists and tutorials on C#
Youtube 1
Youtube 2
Youtube 3
Youtube 4
Youtube 5

https://www.sololearn.com/Course/CSharp/
https://codeasy.net/
https://www.visualstudio.com/dev-essentials/
http://necemonyai.com/blog/post/My-Essentials-Top-12-Tech-Courses-on-Pluralsight-for-NET-Developers.aspx
http://necemonyai.com/blog/post/The-Xamarin-Revolution.aspx
https://channel9.msdn.com/Series/C-Fundamentals-for-Absolute-Beginners/01
https://www.youtube.com/watch?v=SXmVym6L8dw&list=PLAC325451207E3105
https://www.youtube.com/watch?v=x_9lfHjYtVg&list=PL0EE421AE8BCEBA4A
https://www.youtube.com/watch?v=V2A8tcb_YyY&list=PLS1QulWo1RIZrmdggzEKbhnfvCMHtT-sA
https://www.youtube.com/watch?v=pSiIHe2uZ2w&list=PLPV2KyIb3jR6ZkG8gZwJYSjnXxmfPAl51
https://www.youtube.com/watch?v=DNA-SMurT10

 C# .NET Programming | 38

The NeceMoon Album, Volume 2, Page 38

How to Track Mysterious Bugs with Visual Studio
By Necemon

Debugging is the process of finding and resolving defects or problems within the program that prevent
correct operation of computer software or a system. Debugging tactics can involve interactive debugging,
control flow analysis, unit testing, integration testing, log file analysis, monitoring at the application or
system level, memory dumps, and profiling.

Some bugs may be easy to track. I don't want to talk about those. Let's discuss the really mysterious ones.

Like the saying goes, Theory is when one knows everything but nothing works; Practice is when everything
works but nobody knows why. Sometimes Theory and Practice go hand in hand: nothing works and nobody
knows why. In such cases, it's worth remembering about some effective techniques that often allow us to
reach the root of the problem and to display its finer details. Over time, here are the 3 techniques that have
been most useful when debugging with Visual Studio:

1. Managing relevant exceptions with the Exception Settings Window

An exception is an indication of an error state that occurs while a program is being executed. You can and
ǎƘƻǳƭŘ ǇǊƻǾƛŘŜ ƘŀƴŘƭŜǊǎ ǘƘŀǘ ǊŜǎǇƻƴŘ ǘƻ ǘƘŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ŜȄŎŜǇǘƛƻƴǎΣ ōǳǘ ƛǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ƪƴƻǿ Ƙƻǿ ǘƻ
set up the debugger to break for the exceptions you want to see. You can use the Exception Settings
window to specify which exceptions (or sets of exceptions) will cause the debugger to break, and at which
point you want it to break. You can add or delete exceptions, or specify exceptions to break on. Open this
window when a solution is open by clicking Debug / Windows / Exception Settings.

You can find specific exceptions by using the Search window in the Exception Settings toolbar, or use search
to filter for specific namespaces (for example System.IO). The debugger can break execution at the point
where an exception is thrown, giving you a chance to examine the exception before a handler is invoked.

In the Exception Settings window, expand the node for a category of exceptions (for example, Common
Language Runtime Exceptions, meaning .NET exceptions), and select the check box for a specific exception
within that category (for example System.AccessViolationException). You can also select an entire category
of exceptions.

http://necemonyai.com/Blog/post/How-to-Track-Mysterious-Bugs-with-Visual-Studio.aspx
http://necemonyai.com/
https://en.wikipedia.org/wiki/Debugger
http://necemonyai.com/Blog/post/C-Sharp-Free-Learning-Resources-For-Beginners-And-Professionals.aspx
http://necemonyai.com/Blog/post/10-Years-of-Programming.aspx
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/

 C# .NET Programming | 39

The NeceMoon Album, Volume 2, Page 39

2. Not "Just My Code"

By default, the Visual Studio debugger only breaks on exceptions generated from your own (user) code,
hence skipping other system, framework, and other non-user calls. The feature that enables or disables this
behavior is called "Just My Code". Depending on what you are debugging, you may want to disable it,
because the source or description of the issue might well be outside of "your" code.

To disable (or enable) Just My Code, choose the Tools > Options menu in Visual Studio. In the Debugging >
General node, clear (or choose) Enable Just My Code.

3. Recommended tools for Tracing and Error Logging

Sometimes you need to record and analyse the full details of the errors, the events and the inner
exceptions: that tracing involves a specialized use of logging to record information about a program's
execution, typically for debugging purposes. Here are my favorite logging and tracing tools:
- Systems.Diagnostics
- Microsoft Entreprise Library
- NLog
- Elmah
- Log4net

Voilà.

https://docs.microsoft.com/en-us/dotnet/framework/wcf/diagnostics/tracing/recommended-settings-for-tracing-and-message-logging
https://en.wikipedia.org/wiki/Microsoft_Enterprise_Library
http://nlog-project.org/
https://elmah.github.io/
https://logging.apache.org/log4net/

 C# .NET Programming | 40

The NeceMoon Album, Volume 2, Page 40

How to Debug a Windows Service in Visual Studio
By Holty Sow

When you create a Windows Service project under Visual Studio, you may have noticed that the following
dialog box appears when you try to run the service:

In summary, it is simply impossible to run a Windows Service in Visual Studio, you must necessarily go
through the NET START command to start the service after having previously installed it with the
command INSTALLUTIL. Except that this method prevents us from easily debugging the Windows Service.
As a matter of fact, to debug our code, we must install the service, start it, then link the debugger to the
relevant service process from Visual Studio. And by the way, let's keep in mind that we will also have to
stop, recompile and restart the windows service in order to load up any change we make to the code. In
short, it's kinda annoying :D

There is a simpler solution though. We can formulate different compilation directives to detect which mode
we are running: RELEASE or DEBUG. If we are in:
- DEBUG mode: we will treat our windows service as a simple client application by displaying a dialog box
indicating that the service has started
- RELEASE mode: the operation will remain the same as when we tried to run our Windows Service under
Visual Studio. In other words, this mode should be used in production, after the debugging session is
complete

Our use case will be very simple, we will just be running a Windows service and debugging the WCF service
that it hosts. Here are the steps you need to follow:

1. Tweaking the code of the windows service: we will add two
methods, StartWCFService and StopWCFService, which should start and stop listening to WCF incoming
requests respectively. The first method will be called in the OnStart method definition, and the second one
will come from the OnStop method. Below is the code:

http://necemonyai.com/Blog/post/How-to-Debug-a-Windows-Service-in-Visual-Studio.aspx
https://www.linkedin.com/in/holty-samba-sow-43042715

 C# .NET Programming | 41

The NeceMoon Album, Volume 2, Page 41

private ServiceHost host;

public MyWindowsService()
{
 InitializeC omponent();
}

protected override void OnStart(string [] args)
{
 StartWCFService();
}

protected override void OnStop()
{
 StopWCFService();
}

public void StartWCFService()
{
 host = new ServiceHost (typeof (IWCFService));
 host.Open();
}

public void StopWCFService()
{
 if (host != null && host.State == CommunicationState .Opened)
 host.Close();
}

2. Tweaking the Program.cs file: it's in the Main method that we would detect our selected compilation
mode. If we are in RELEASE mode, then the windows service is running as usual and if we try to run it in
Visual Studio within this mode, we will obviously get the so-called dialog box. If, on the other hand, we are
in DEBUG mode, then it gets easier, we directly call the StartWCFService method of the instance of our
windows service (so the OnStart method will not be called) and then we display a dialog box to notify the
user. When they close the dialog box, the StopWCFService method is called to stop the WCF service
(therefore, the actual OnStopmethod of the Windows service will not be called).

Here is the code of the Main method:

 C# .NET Programming | 42

The NeceMoon Album, Volume 2, Page 42

static void Main()
{
 MyWindowsService service = new MyWindowsService();
 #if DEBUG
 service.StartWCFService();
 MessageBox.Show("Le service a démarré...");
 service.StopWCFService();
 #else
 ServiceBase[] ServicesToRun;
 ServicesToRun = new ServiceBase[]
 {
 service
 };
 ServiceBase.Run(ServicesToRun);
 #endif
}

I hope this post has been helpful ;-)

 C# .NET Programming | 43

The NeceMoon Album, Volume 2, Page 43

My Essentials : Top 12 Tech Courses on Pluralsight for .NET Developers
By Necemon

Pluralsight is the largest online tech and creative library on the planet: an online education platform that
offers a variety of video training courses for software developers, IT administrators, and creative
professionals through its website.

I have been learning quite a bit from Pluralsight, and here are my favorites so far.

Learning Technology in the Information Age
So much to learn, so little time... This course will show both beginners and experts how to learn more in
less time.
Would you write code without a design? Build hardware without a schematic? Configure a server without a
plan? Of course not. Yet, how many of us learn technology without any planning, choosing resources at
random in the hope that one of them will be worthwhile? This is horribly inefficient, and worse, can leave
critical holes in your knowledge and skills. In this course you'll learn how to design a plan for learning any
technology effectively and efficiently based on your own needs and goals.

Reprogramming the Developer Mind
Explore the habits and career tactics that create remarkable developers. Take control of your career, and
set yourself apart from the pack. Become an Outlier.
¢Ƙƛǎ ŎƻǳǊǎŜ ƛǎ ŀōƻǳǘ ƳŀƪƛƴƎ ŀ ǇŀǊŀŘƛƎƳ ǎƘƛŦǘ ƛƴ Ƙƻǿ ȅƻǳ ƳŀƴŀƎŜ ȅƻǳǊ ŎŀǊŜŜǊΦ ²ŜΩƭƭ ŘƛǎŎǳǎǎ ŎƻƴŎǊŜǘŜ
activities and skills that transform average ŘŜǾŜƭƻǇŜǊǎ ƛƴǘƻ ƻǳǘƭƛŜǊǎΦ ¸ƻǳΩƭƭ ƭŜŀǊƴ ǿƘȅ ŘŜǾŜƭƻǇŜǊǎ Ŏŀƴϥǘ ŀŦŦƻǊŘ
ŎŀōƭŜΣ ǿŀȅǎ ǘƻ ƛƳǇǊƻǾŜ ȅƻǳǊ άƭǳŎƪ ǎǳǊŦŀŎŜ ŀǊŜŀέΣ ŀƴŘ ǘŜŎƘƴƛǉǳŜǎ ǘƻ ŎƻƳǇǊŜǎǎ ȅƻǳǊ ŎŀǊŜŜǊ ǘƘǊƻǳƎƘ
accelerated development. You'll learn the foundational skills for becoming an outlier: command your time,
hack your image, and own your trajectory. Prepare to think about your development career in a whole new
way.

http://necemonyai.com/Blog/post/My-Essentials-Top-12-Tech-Courses-on-Pluralsight-for-NET-Developers.aspx
http://necemonyai.com/
https://www.pluralsight.com/courses/learning-technology-information-age
https://www.pluralsight.com/courses/career-reboot-for-developer-mind

 C# .NET Programming | 44

The NeceMoon Album, Volume 2, Page 44

Encapsulation and SOLID
This course teaches how to write maintainable and flexible object-oriented code. Learn how to write
maintainable software that can easily respond to changing requirements using object-oriented design
principles. First, you'll learn about the fundamental object-oriented design principle of Encapsulation, and
then you'll learn about the five SOLID principles, also known as 'the principles of object-oriented design.'
While this course is aimed at beginner to intermediate developers, it's based on decades of experience, so
even advanced programmers can learn a thing or two. There are plenty of code examples along the way;
while they're written in C#, they should be easily understandable to readers of C, C++ or other curly-brace-
based languages.

Date and Time Fundamentals
This course will help you to understand dates and times, and how they should be used in software
development.
Managing dates and times properly is one of the most difficult things to get right in software. This is mostly
due to how humans have introduced nuance into our calendars and clocks. In this course, you can
straighten it all out. You will learn about UTC, daylight saving time, time zones, and calendar systems. You
will also learn how date and time values are represented and manipulated in various programming
languages. We will look closely at the different kinds of time zone data, and discuss various fallacies and
gotchas that are commonly encountered. We will deep dive into how date and time are handled in the .NET
Framework, and in JavaScript. We will also look at various libraries that make things slightly more bearable.
Throughout the course, you will learn about real-world situations that require deeper thought about how
date and time are handled in your applications, and I will give you practical advice on how to solve them.

Web Security and the OWASP Top 10: The Big Picture
Security on the web is becoming an increasingly important topic for organisations to grasp. This course
takes you through a very well-structured, evidence-based prioritisation of risks and most importantly, how
organisations building software for the web can protect against them.

Visual Studio : Essentials to the Power-User
This course introduces Visual Studio and includes productivity boosters for everyone to make writing and
reading code easier and more fun. Visual Studio is an integrated development environment you can use to
create applications and libraries with many different frameworks and languages. It has a rich feature set,
including an intelligent editor, built in compiler (and related tools), and context sensitive help. This course
starts with basic concepts like projects and solutions, shows you how to make Visual Studio look and work
the way you want it to, and demonstrates how to use the most popular tool windows and dialogs. It goes
further into tips and shortcuts that will save you time every day. Using Visual Studio is about more than
writing code or reading code written by others. To be truly productive, you need to debug well and
understand the designers that help you build your user interface. This course also shows you how to add
helpful extensions that make Visual Studio even better. When you've completed it, you'll know how to use
the tool itself and can focus on a specific language or framework as your next step.

https://www.pluralsight.com/courses/encapsulation-solid
https://www.pluralsight.com/courses/date-time-fundamentals
https://www.pluralsight.com/courses/web-security-owasp-top10-big-picture
https://www.pluralsight.com/courses/visual-studio-2015-essentials-power-user

 C# .NET Programming | 45

The NeceMoon Album, Volume 2, Page 45

Bootstrap 3
Twitter's Bootstrap 3 can help you achieve a great looking and performing web site. Building great looking
websites that work well with different sized devices can be a challenge. By utilizing Bootstrap 3 framework,
you can meet that challenge head-on. Bootstrap 3 is a mobile-first responsive design framework for
structuring your website's HTML. It includes a great grid system, responsive design, CSS typography and
components to solve many of the most common design challenges that face web developers today.

Building Your First Xamarin.Android App from Start to Store
Xamarin is a cross-platform development tool. It solves dilemmas many developers face when developing
cross-platform apps: separate coding languages and UI paradigms. With Xamarin, you can use C# for iOS,
Android, and Universal Windows apps.
In this course, you'll learn how to build a complete, fully-working Xamarin.Android app using C#.
Xamarin.Android is covered in a very practical, hands-on way that you can follow along.

More Effective LINQ
Learn how to fully harness the power of LINQ by exploring best practices and avoiding common pitfalls by
solving some fun and challenging problems. In this course, you will learn how to take full advantage of the
power and capabilities of LINQ. You will see how the LINQ extension methods can be combined together to
solve complex problems in a simple and succinct "pipeline." Throughout the course, you will learn to solve
some "LINQ Challenges" and pick up lots of pro tips that will take your LINQ skills to the next level, including
how to extend, debug, optimize, and test LINQ.

Async C#
In this advanced series, Jon Skeet shows us the new Asynchronous goodness available in C# 5.0. Managing
threads, awaiting asynchronous calls - these are all made simple with a few new keywords and types.
Asynchronous coding in a static language is not exactly "simple," and rather than try to simplify complex
topics, Jon have, instead, decided to go deep and see how things work at a deeper level.
Again, this is an advanced production! If you are new to C# (or new to programming in general), you may
want to become familiar with the basics of C# before you tackle this one.

TypeScript Fundamentals
TypeScript is an open source language that provides support for building enterprise scale JavaScript
applications. Although several patterns exist that can be used to structure JavaScript, TypeScript provides
container functionality that object-oriented developers are familiar with, such as classes and modules. It
also supports strongly-typed code to ensure inappropriate values aren't assigned to variables in an
application.
In this course, John Papa (link to his site) will walk you through the key concepts and features that you need
to know to get started with TypeScript, and use it to build enterprise scale JavaScript applications. You'll
learn the role that TypeScript plays as well as key features that will help jump-start the learning process.

https://www.pluralsight.com/courses/bootstrap-3
https://www.pluralsight.com/courses/android-xamarin-from-start-to-store
http://necemonyai.com/blog/post/The-Xamarin-Revolution.aspx
https://www.pluralsight.com/courses/linq-more-effective
https://www.pluralsight.com/courses/skeet-async
https://www.pluralsight.com/courses/typescript

 C# .NET Programming | 46

The NeceMoon Album, Volume 2, Page 46

Understanding ASP.NET Core
This course will help you quickly grasp how to get going with ASP.NET Core with a compact, practical
presentation, covering all the best new features of ASP.NET since its release.
This latest release of .NET has a lot to be excited about, it not only supports development for a lightweight
version of .NET called .NET Core, but for the first time you can also target non-Windows platforms. In this
course, Understanding ASP.NET Core, you'll get to see what concepts are most important to get you quickly
up to speed. You'll start with seeing what's changed within the project structure and mechanics in Visual
Studio. Then, you'll get to see what's new in MVC for ASP.NET Core along with sharing code across existing
.NET frameworks and newer .NET Core frameworks. Finally, you'll get to see it's versatility first-hand when
an application is deployed to multiple operating systems. By the end of this course, you'll be ready to take
advantage of the best new features of this latest release of .NET.

https://www.pluralsight.com/courses/asp-dot-net-core-understanding

 C# .NET Programming | 47

The NeceMoon Album, Volume 2, Page 47

Deploying a Web App to IIS / Windows Server In 7 Clever Steps
By Necemon

Here is a simple deployment routine, for a reliable and smooth release :-)

1. Create/configure the website and its application pool

2. Copy the files over : setup an FTP(S) connection, as well as the client access (FileZilla, Visual Studio, etc.)

3. Assign writing permissions to the application identity on the relevant folders (for logging, files uploads,
etc.)

4. Set time outs to appropriate values
Idle Timeout: you can change it from the default of 20 to however many minutes you want. You can also
adjust the setting to 0 (zero) which effectively disables the timeout so that the application pool will never
shut down due to being idle. This can be configured in the Advanced Settings of the application pool.
ConnectionTimeOut: specifies the time (in seconds) that IIS waits before it stops a connection that is
considered inactive. This can be configured in of the Advanced Settings of the Administrative Tools
(system.applicationHost/weblimits).

http://necemonyai.com/Blog/post/Deploying-a-Web-App-to-IIS-Windows-Server-In-7-Clever-Steps.aspx
http://necemonyai.com/
https://support.microsoft.com/en-us/kb/323972
https://technet.microsoft.com/en-us/library/cc731784(v=ws.10).aspx
https://technet.microsoft.com/en-gb/library/hh831655.aspx
https://wiki.filezilla-project.org/FileZilla_Client_Tutorial_(en)
https://msdn.microsoft.com/en-us/library/34322t8f.aspx
https://www.bluevalleytech.com/techtalk/blog/assigning-ntfs-folder-permission-to-iis7-application-pools/
http://aspnetfaq.com/iis7-application-pool-idle-time-out-settings/
https://www.iis.net/configreference/system.applicationhost/sites/site/limits

