
Business at the speed of game production: OpenGL or XNA?
Necemon Yai

Department of Computer Science, Swansea University

******@swansea.ac.uk

(a) Some OpenGL

spheres [Silicon

Graphics]

(b) An OpenGL sphere

(c) An XNA sphere
(d) Some spheres in an XNA game

[Riemers]

Figure 1: Teaser

Abstract

A common start-ups' question in the gaming industry is:

Which graphical environment should we use? As time is money, a

crucial factor in a choice is time: not only the time it takes to build

complete games with each API but also a fluid timing during the

gaming experience to make it enjoyable. In this analysis, we will

compare the OpenGL industry standard to the Microsoft XNA

game framework on the speed factor. The study will include

learning curve, programming, modeling and rendering speeds on

both sides.

1 Introduction

A graphics API is basically a way to talk to graphics

hardware. By using an API, it gets simpler to send drawing

commands to the hardware, since human understandable formats

can be used. There are different graphics APIs available nowadays

and each API has got advantages and disadvantages. There are

many factors that can influence the choice of a specific API,

namely cross-platform support, performance, ease of use,

popularity, licensing, etc. When it comes to speed, we are more

concerned with the performance factor, mainly determined the

amount of functional layers (abstraction) between the API and the

hardware can differ. Performance is often about the amount of

code that’s being processed, so in many cases more code equals

lower performance. A business aiming for production speed

would also be concerned with the learning curve and the

programming time that should be involved.

OpenGL are both great graphics APIs currently used in the

game industry. It can be really a dilemma to go for a particular

one. Keeping the speed factor in mind, we will try to come up

with the most relevant one according to our needs.

2 Background

Let’s introduce the APIs and their features.

2.1 OpenGL

OpenGL (Open Graphics Library) is a standard specification

defining a cross-language, cross-platform API for writing

applications that produce 2D and 3D computer graphics. The

interface consists of over 250 different function calls which can be

used to draw complex three-dimensional scenes from simple

primitives. OpenGL was developed by Silicon Graphics Inc.

(SGI) in 1992 and is widely used in CAD, virtual reality,

scientific visualization, information visualization, and flight

simulation. It is also used in video games, where it competes with

Direct3D on Microsoft Windows platforms. OpenGL is managed

by a non-profit technology consortium, the Khronos Group

[Wikipedia 1].

2.2 Microsoft XNA

Microsoft XNA ('XNA's Not Acronymed) is a set of tools

with a managed runtime environment provided by Microsoft that

facilitates computer game development and management. XNA

attempts to free game developers from writing "repetitive

boilerplate code" and to bring different aspects of game

production into a single system. The XNA toolset was announced

March 24, 2004, at the Game Developers Conference in San Jose,

California. A first Community Technology Preview of XNA

Build was released on March 14, 2006. XNA Game Studio 2.0

was released in December 2007, followed by XNA Game Studio

3.0 on October 30, 2008.

XNA currently encompasses Microsoft's entire Game

Development Sections, including the standard Xbox Development

Kit and XNA Game Studio [Wikipedia 2].

3 Learning curve and programming VS
Performance

Since OpenGL is a native C library, the interface provided does

not implement any classes or namespaces.

XNA on the other hand is a .NET platform enabled Framework

which means that it cannot be used by native languages, only by

managed languages but it implements classes and namespaces.

XNA also includes a lot of helper functions and libraries and is

fully compatible with the .NET framework. So it is easier to write

XNA programs. It is also easier to learn it.

While OpenGL is closer to the hardware, implements fewer levels

of abstraction and can be ported to a higher level language, the

time it takes to develop an OpenGL application will be higher

than that of an XNA application.

The XNA Framework is a .NET library which invokes native

Direct3D calls to be used on the virtual machine in which the

.NET Framework operates. This high level of abstraction can

cause performance issues and it is recommended to use the XNA

Framework solely for lower performance applications

[Scriptionary].

From this analysis we can deduct that XNA has a faster learning

curve and an better ease of use; But OpenGL seems to offer a

better performance. Let’s check this assumption through a

performance test.

4 Performance Test

4.1 Description

The comparative performance test will consist of displaying a

huge number of spheres using each API and check which API

takes more time. The glutsolidsphere() function is used to draw

spheres in OpenGL but there is no straight away mean of drawing

primitives in XNA, so we will be using some third party class for

our purpose [Tshrove].

The experiment happens in a windows 7 environment. The system

is a HP Envy 15 laptop with 4 GB ram and an i7 quadcore

processor.

On both sides, we draw spheres with only radius 1, 10 stacks and

10 slices.

4.2 Code

4.2.1 OpenGL Code

We use a loop to create many spheres using the glutSolidSphere()

function. We gradually increase the maximum value of the

counter

for(i=0;i<10000;i++)

 glutSolidSphere(1,10,10);

We print the current time twice in the console window: once

before we draw the spheres and again just after we draw the

sphere:

time(&now);

 current = localtime(&now);

printf("the time is %i:%i:%i\n",

current->tm_hour, current->tm_min,

current->tm_sec);

4.2.2 XNA Code

The process is similar. We draw a big number of spheres using a

‘for loop’ and we increase that number gradually.

for (long i = 0; i < 100; i++)

 {

 m = new

Tshrove.Primitives.Sphere(this, 10, 10,

1.0f, Content.Load<Texture2D>("t"),

 Matrix.CreateLookAt(new

Vector3(10.0f, 10.0f, 600.0f),

Vector3.Zero, Vector3.Up),

Matrix.CreatePerspectiveFieldOfView(Mat

hHelper.PiOver4,

GraphicsDevice.Viewport.AspectRatio,

0.0001f, 1000.0f));

 slist.Add(m);

 m.Initialize();

 }

foreach (Tshrove.Primitives.Sphere sp

in slist)

 this.Components.Add(sp);

[Aaron Reeds]

We note the current time twice also, once before drawing spheres

and once after drawing spheres. This time, we don’t print times in

a console application. We print that in a text file.

file = new

System.IO.StreamWriter("n:\\test.txt",

true);

file.WriteLine(System.DateTime.Now +

"." + System.DateTime.Now.Millisecond);

 file.Close();

4.3 Screenshots

Figure 2: A sphere in OpenGL

Figure 3: A sphere in XNA

4.4 Results

Number of

spheres
OpenGL time XNA time

1000 < 1 sec 0.191 sec

10000 < 2 sec 6.610 sec

50000 < 10 sec 2min 9.396 sec

70000 < 14 sec 5min 6.342 sec

Table 1: Comparison between OpenGL and XNA drawing times

 Chart 1: 2 D line chart expressing the results

5 Conclusion

Through the results, we can note that OpenGL provides a

much better performance but XNA also brings some advantages

to the game business. XNA is much easier and faster to learn.

Regarding speed, even though XNA is easier to learn and to code,

we can feel that OpenGL can be more interesting on a long term

to produce industry games. A team of well trained OpenGL

developers definitely got a performance advantage over XNA

rivals.

References

Silicon Graphics, Addison Wesley 1994, OpenGL

Programming Guide

Riemers XNA tutorials,

http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series2/Point_

sprites.php

Wikipedia (1), The Free Encyclopaedia, Wikipedia on

OpenGL, http://en.wikipedia.org/wiki/OpenGL, accessed in

March 2010

Wikipedia (2), The Free Encyclopaedia, Wikipedia on

Microsoft XNA, http://en.wikipedia.org/wiki/Microsoft_XNA,

accessed in March 2010

Scriptionary, Direct3D, OpenGL and XNA Fieldguide,

http://scriptionary.com/Direct3D,_OpenGL_and_XNA_Fieldguid

e, accessed in march 2010

Tshrove, a place where developers can add code for other

developers to use and customize, XNA sphere class.

http://code.tshrove.com/?page_id=8, accessed in march 2010

Aaron Reeds, O’Reilly 2009, Learning XNA 3.0

http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/Microsoft_XNA
http://scriptionary.com/Direct3D,_OpenGL_and_XNA_Fieldguide
http://scriptionary.com/Direct3D,_OpenGL_and_XNA_Fieldguide
http://code.tshrove.com/?page_id=8

